(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following:

i) Integrating factor of the differential equation

$$\int_{0}^{\infty} ||f(x)|^{2} dx + (2x^{2}y - y - ax^{3}) dx = 0 \text{ is}$$

a)
$$x/\sqrt{1-x^2}$$

a)
$$x/\sqrt{1-x^2}$$
 b) $x/\sqrt{x(x^2-1)}$ c) $x/\sqrt{x^2-1}$ d) $x^2/\sqrt{1-x^2}$

c)
$$x/\sqrt{x^2-1}$$

d)
$$x^2/\sqrt{1-x^2}$$

Answer: $\frac{1}{r\sqrt{1-r^2}}$

ii) The order and degree of the differential equation

$$\sqrt{d^2y/dx^2} + dy/dx = y \text{ are}$$

Two teams of the same of the

iii)
$$\frac{1}{(D-2)(D-3)}e^{2x}$$
 is

a)
$$-e^{2x}$$

b)
$$xe^{2x}$$

$$\checkmark$$
c) $-xe^{2x}$

d)
$$-xe^{3x}$$

iv) If for a sequence (U_n) , $\lim_{n\to\infty} U_n = 0$, then

a)
$$\{U_n\}$$
 is convergent

b)
$$\{U_n\}$$
 is divergent

$$\checkmark$$
c) $\{U_n\}$ is convergent to 0

d) none of these

- v) The infinite series $\sum_{n=0}^{\infty} \frac{n}{n+1}$ is
 - a) divergent
- b) convergent
- c) oscillatory
- √d) none of these
- vi) The value of a for which $\{(1,2,3), (0,-1,9), (4,0,a)\}$ is linearly dependent is

$$a) - 20$$

$$b) - 10$$

- b) -10 c) -5 √d) None of these
- vii) If the third order square matrix A is diagonalizable, then the number of independent eigenvectors of A is

LET HELP H

- a) two
- √b) three
- c) one

d) none of these

POPULAR PUBLICATIONS

viii) If S and T be two subspaces of a vector space V, then which of the following is also a subspace of V?

a)
$$S \cup T$$

b)
$$S-T$$

c)
$$T-S$$

ix) The dimension of the subspace $\{(x, 0, y, 0) | x, y \in R\}$ is

x) Let V and W be two vector spaces over R and $T:V\to W$ is a linear mapping. Then $Im\ T$ is a sub-space of

c)
$$V \cup W$$

$$\checkmark$$
d) $V \cap W$

xi) The infinite series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if

a)
$$p \ge 1$$

✓b)
$$p > 1$$

c)
$$p \le 1$$

d) none of these

xii) The lower bound of the sequence $\{(-1)^{n-1}/n!\}$ is

$$\checkmark$$
a) −1/2

d) none of these

xiii) Eliminating A and B from $y = A\cos x + B\sin x$, the differential equation is

a)
$$\frac{d^2y}{dx^2} = 0$$

b)
$$\frac{d^2y}{dx^2} - y = 0$$

✓c)
$$\frac{d^2y}{dx^2} + y = 0$$
 d) $\frac{d^2y}{dx^2} = 1$

d)
$$\frac{d^2y}{dr^2} = 1$$

xiv) The particular integral of $(D^2 + 1)y = \sin x$ is

b)
$$x\cos x$$

$$\checkmark$$
d) $-\frac{x}{2}\cos x$

GROUP - B (Short Answer Type Questions)

2. Solve: $(px-y)(py+x)=a^2p$ by using the substitution $x^2=u$, $y^2=v$ where $p=\frac{dy}{dx}$ See Topic: DIFFERENTIAL EQUATIONS, Long Answer Type Question No. 1(b).

3. Examine the convergence of the sequence $\left\{ \left(1 + \frac{2}{n}\right)^n \right\}$.

See Topic: SEQUENCE, Short Answer Type Question No. 6.

4. Examine the convergence of the series: $\frac{1}{2} + \frac{2}{3}x + \left(\frac{3}{4}\right)^2 x^2 + \left(\frac{4}{5}\right)^3 x^3 + \dots$

See Topic: SERIES, Short Answer Type Question No. 11.

5. Show that $W = \{(x_1, x_2, x_3, x_4) \in R^4 | x_1 - x_2 + x_3 = x_4 \}$ is a subspace of R^4 .

See Topic: LINEAR ALGEBRA, Short Answer Type Question No. 18.

6. Find the representative matrix of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (3x + z, -2x + y, -x + 2y + 4z)

See Topic: LINEAR ALGEBRA, Short Answer Type Question No. 19.

7. Find the basis of $S = \{(x, y, z) \in \mathbb{R}^3 | x + 2y + z = 0, 2x + y + 3z = 0\}$

See Topic: LINEAR ALGEBRA, Short Answer Type Question No. 20.

(Long Answer Type Questions)

8. a) Solve:
$$\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} = 12\frac{\log x}{x^2}$$

- b) Obtain the general solution and singular solution of the equation $y = px + \sqrt{a^2p^2 + b^2}$
- c) Solve: $3\frac{dy}{dx} + \frac{2y}{x+1} = \frac{x^3}{y^2}$

See Topic: DIFFERENTIAL EQUATIONS, Long Answer Type Question No. 10(a), 8(b) & 10(b).

9. a) State Leibnitz theorem for Alternating series and test the convergence of the series

$$1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$$

b) Test the convergence of the following series

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{3^3} + \dots$$

- c) Show that the sequence $\left\{2 + \frac{(-1)^n}{n}\right\}$ is convergent.
- a) See Topic: SERIES, Long Answer Type Question No. 9(a).
- b) See Topic: SERIES, Long Answer Type Question No. 9(b).
- c) See Topic: SEQUENCE, Short Answer Type Question No. 4.

10. a) Solve
$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 29y = 0$$
 when $x = 0$, $y = 0$, $\frac{dy}{dx} = 15$

- b) Show that the sequence $\sqrt{2}$, $\sqrt{2+\sqrt{2}}$, $\sqrt{2+\sqrt{2}+\sqrt{2}}$, converges to 2.
- c) Define basis and dimension of a vector space.
- a) See Topic: DIFFERENTIAL EQUATIONS, Long Answer Type Question No. 11.
- b) See Topic: SEQUENCE, Long Answer Type Question No. 5.
- c) See Topic: LINEAR ALGEBRA, Short Answer Type Question No. 6.
- 11. a) Prove that the vectors (x_1, y_1) and (x_2, y_2) are linearly dependent, if and only if
- b) Show that the vectors $\alpha_1=(1,0,-1)$, $\alpha_2=(1,2,1)$ and $\alpha_3=(0,-3,2)$ form a basis of R^3 . Express (1,0,0) as a linear combination of $lpha_1,lpha_2$ and $lpha_3$.
- c) If α_1 , α_2 , α_3 form a basis of a vector space V, then prove that $\alpha_1 + \alpha_3$, $2\alpha_1 + 3\alpha_2 + 4\alpha_3$ and $\alpha_1 + 2\alpha_2 + 3\alpha_3$ also form a basis of the vector space V.
- a) See Topic: LINEAR ALGEBRA, Long Answer Type Question No. 5(c).
- b) & c) See Topic: LINEAR ALGEBRA, Long Answer Type Question No. 14 (a) & (b).
- 12. a) Let T be defined by T(x, y) = (x', y') where $x' = x\cos\theta y\sin\theta$, $y' = x\sin\theta + y\cos\theta$
- b) The linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ transforms the basis vectors (1,2,1), (2,1,0) & (1,-1,-2) to the basis vectors (1,0,0),(0,1,0)&(0,0,1) respectively. Find \mathcal{T} . Hence find T(3,-3,3).
- c) Find the Kernel, Image, Nullity and Rank of

$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
 where

$$T(1,0,0)=(2,1)$$

$$T(0,1,0)=(0,1)$$

MATHEMATICS - II

$$T(0,0,1)=(1,1)$$

- a) & b) See Topic: LINEAR ALGEBRA, Long Answer Type Question No. 15(a) & (b).
- c) See Topic: LINEAR ALGEBRA, Long Answer Type Question No. 5(a).
- 13. a) Prove that a subset S of a vector space V over R is a subspace if and only if $\alpha x + \beta y \in S$ for all α , $\beta \in R$ and x, $y \in S$.
- b) Show that the family $\,M_{\,2}\,$ of all real square matrices of order 2 forms a vector space over reals, and find a basis for $\,M_{\,2}\,$.

c) Let
$$S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a+b=0 \text{ and } a,b,c,d \in R \right\}$$
. Prove that S is a subspace of M_2 .

See Topic: LINEAR ALGEBRA, Long Answer Type Question No. 16 (a), (b) & (c).